Inorganic Chemistry

Carbene Stabilization of Highly Reactive Main-Group Molecules

Yuzhong Wang and Gregory H. Robinson*

Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States

Supporting Information

ABSTRACT: This article highlights recent efforts of this laboratory in the stabilization of highly reactive, low-oxidation-state, main-group molecules using bulky N-heterocyclic carbene ligands $[L: = :C\{N(2,6-Pr_2C_6H_3)CH\}_2; L': = :C\{N(2,4,6-Me_3C_6H_2)CH\}_2;$ L'': = :C{(*i*-Pr)NC(Me)}₂]. The syntheses, structures, and computational studies of carbene-stabilized neutral diborenes [L:(H)B=B(H):L and L':(H)B=B(H):L'], a neutral Ga₆ octahedron (L'':Ga[Ga₄Mes₄]Ga:L''), disilicon (L:Si=Si:L), bis-silylene [L:(Cl)Si-Si(Cl):L], dipnictogens (L:E-E:L, E = P, As; L':P-P:L'), and parent phosphinidene (L:PH) are discussed. Some of the unique challenges associated with this "carbenestabilization" strategy are also presented.

INTRODUCTION

The significant advances in low-oxidation-state main-group chemistry over the past few decades have yielded a number of iconic molecules.^{1- $\frac{1}{3}$} The choice of ligand, as is often the case, has proven critical in the synthesis of these compounds. Sterically demanding, (formally) anionic ligands have been extensively utilized in the synthesis of these molecules. Arguably, m-terphenyl ligands have been the most prolific ligands in this regard.^{4–} Some years ago, chemists began to utilize *neutral* donor ligands in this strategy.^{8,9} Notably, the "neutral" character of these types of donor ligands grants access to compounds containing maingroup elements in the formal oxidation state of zero. To this end, N-heterocyclic carbenes (NHCs), discovered by Arduengo et al.¹⁰ and extensively utilized in organic and transition-metal catalysis,¹¹ are attractive in this regard. Indeed, we have witnessed remarkable progress in carbene-based main-group chemistry.¹²⁻¹⁴ In this article, we highlight the syntheses, structures, and computational studies of NHC-stabilized, low-oxidation-state, maingroup molecules that were recently discovered in our laboratory. These carbene-stabilized main-group molecules with unusually low oxidation states not only exhibit structural novelty but also provide a unique platform from which novel main-group molecules may be further accessed.

SELECTION OF NHC LIGANDS

Over the past two decades, NHCs has considerably extended.¹⁵ Among these, ligands I (L: = $:C\{N(2,6-Pr_2C_6H_3)CH\}_2),$ NC(Me)₂) are particularly attractive (Scheme 1).^{16,17}

The 2,6-diisopropylphenyl substituents in I and the mesityl substituents in II provide significant steric bulk about the carbene center, while the isopropyl groups of III afford considerably less bulk. It is also significant that ligands I, II, and III contain aromatic five-membered imidazole rings and are expected to be more robust under harsh reaction conditions than ligands IV, V, and VI, which contain a saturated, nonaromatic C_3N_2 ring. The reactions of lithium metal with I and IV clearly illustrate this point: the former results in a lithiated carbene ligand [VII, an anionic N-heterocyclic dicarbene because it exhibits dicarbene character at both the C(2) and C(4) centers],^{18,19} while the latter affords a ring-cleavaged product VIII (Scheme 2).²⁰

The X-ray structure of VIII (Figure 1) confirms that lithium reduction of IV led to a lithiated amidine ligand (VIII) through cleavage of the C-N bonds and the coupling reaction between the carbene carbon [C(1)] and the benzylic carbon [C(8)] in IV.

NHC-EX_n COMPLEXES

The room temperature reaction of NHCs with EX_n (E = B, Si, P, or As; X = Br or Cl; n = 3 or 4) in hexane results in the quantitative preparation of carbene-EX_n complexes (Scheme 3).²¹⁻²⁶ In contrast to the boron complexes (1 and 2), the silicon, phosphorus, and arsenic complexes (3-7) are hypervalent compounds. The molecular structures of compounds 1, 3, 4, and 6 are given in Figure 2.

The boron atom in compound 1 is four-coordinate and adopts a tetrahedral geometry.²¹ The B–C single bond distance in 1[1.623(7) Å] is 0.03 Å longer than that of L:BH₃ [L: = I; 1.585(4) Å]. In hypervalent 3^{23} the carbene resides in an equatorial site, with the four chlorine atoms completing the

Received: April 1, 2011 Published: June 02, 2011

Scheme 1. Typical NHCs

Scheme 2. Reaction of Lithium with I and IV

trigonal-bipyramidal coordination of silicon. The Si-C bond distance in 3 [1.928(2) Å] compares well to that in L:SiCl₄ [1.911(7) Å; L: = :C{EtNC(Me)}₂]²⁷ and L:SiCl₂ [1.985(4) Å; L: = I].²⁸ The axial Si-Cl bond distances $[d_{Si(1)-Cl(2)} =$ $d_{Si(1)-Cl(2A)} = 2.1892(5)$ Å] are about 0.12 Å longer than those [2.0696(6) Å] of the equatorial ones. Perhaps expectedly, compounds 4 and 6 are isostructural.^{24–26} While the central atom (phosphorus for 4; arsenic for 6) is four-coordinate, the coordination about the central atom adopts a seesaw orientation. In both cases, while two chlorine atoms reside at axial positions, one C_{NHC} atom, one chlorine atom, and one lone pair of electrons occupy the three equatorial sites. Notably, unlike 3, the two axial E-Cl (E = P or As) bond distances differ considerably $[d_{P(1)-Cl(2)} = 2.471 \text{ Å (av)}, d_{P(1)-Cl(3)} = 2.238 \text{ Å (av)}; d_{As(1)-Cl(2)} = 2.484(2) \text{ Å}, d_{As(1)-Cl(3)} = 2.359(2) \text{ Å}],$ which are longer than that in the equatorial plane $[d_{P(1)-Cl(1)} = 2.484(2) \text{ Å}, d_{As(1)-Cl(3)} = 2.359(2) \text{ Å}]$ 2.032 Å (av); $d_{As(1)-Cl(1)} = 2.171(1)$ Å]. Both the P–C bond distance of 1.871(11) Å in 4 and the As-C bond distance of 2.018(3) Å in 6 are consistent with the corresponding single bonds.

Figure 1. Molecular structure of **VIII** (thermal ellipsoids represent 30% probability; hydrogen atoms are omitted for clarity). Selected bond distances (Å) and angles (deg): Li(1)–N(1) 1.995(5), Li(1)–N(2) 2.141(5), Li(1)–O(1) 1.958(3), N(1)–C(1) 1.353(3), N(2)–C(1) 1.319(3), C(1)–C(8) 1.560(3); O(1)–Li(1)–O(1A) 108.9(3), N(1)–Li(1)–N(2) 66.87(16), N(1)–C(1)–N(2) 117.3(2), N(1)–C(1)–C(8) 111.4(2), N(2)–C(1)–C(8) 131.3(2).

Scheme 3. Synthesis of NHC-EX_n Complexes

NHC-STABILIZED NEUTRAL DIBORENES

In contrast to the ubiquitous homonuclear multiple-bond chemistry of its group 14 neighbor carbon, boron is best known for its electron-deficient borane clusters.²⁹ Both the first structurally characterized radical anion containing a one-electron π -bond, $[Mes_2BB(Mes)Ph]^{\bullet-,30}$ and the first diborane dianion containing

Figure 2. Molecular structures of L:BBr₃ (1), L:SiCl₄ (3), L:PCl₃ (4), and L:AsCl₃ (6) (L: = I; hydrogen atoms are omitted for clarity).

Scheme 4. Evolution of B–B Multiple Bonds

a B–B double bond, $[Mes_2B=B(Mes)Ph]^{2-,31}$ were reported by Power and co-workers more than a decade ago. Each threecoordinate boron atom in these two interesting compounds bonds to two (formally) anionic ligands (in addition to the other boron atom). In order to achieve the π -bond in these systems, one or two additional electrons had to be "added" to the respective neutral diborane(4) precursors by alkali-metal reduction, thus rendering their anionic character. Thus, to construct a neutral molecule containing a B=B double bond, one R⁻ group of each boron in $[R_2B=BR_2]^{2-}$ would have to be replaced by a neutral Lewis base ligand L: (L: = CO, PR₃, or NHC; Scheme 4).^{21,32,33}

The potassium graphite reduction of 1 in diethyl ether afforded both an air-sensitive, crystalline red, neutral diborene, L:(H)B=B(H):L (8), and an air-stable colorless, crystalline diborane, L:(H)₂B-B(H)₂:L (9; Scheme 5).²¹ When the less sterically demanding carbene ligand II was employed in this synthetic strategy, the corresponding compounds L':(H)B=B-(H):L' (10) and L':(H)₂B-B(H)₂:L' (11) (L': = II) were isolated.²² Notably, the aluminum analogues of diboranes 9 and 11 have recently been synthesized by reducing L:AlH₃ with a RMg-MgR (R = [(MesNCMe)₂CH]⁻) compound, which exhibits a structure similar to those of diboranes 9 and 11.³⁴

The most intriguing feature of **8** is its planar C(H)B=B(H)C core (Figure 3). The 1.560(18) Å (av) B=B double-bond distance is comparable to those reported for the diborane dianions [from 1.566(9) to 1.636(11) Å],^{31,35,36} to the computed B=B bond distances for OC(H)B=B(H)CO (1.590 Å),³⁷ and to the computed distances in triplet diborene(2) H-B=B-H (1.498-1.515 Å).³⁸ The B=B distance in **8** is 0.27 Å shorter than the B-B single-bond distance in **9** [1.828(4) Å]. While the tetrahedral boron atom in **9** (and **11**) has the formal oxidation state of +2, the trigonal-planar boron atom in **8** (and **10**) bears the formal oxidation state of +1. Interestingly, **10** exhibited polymorphism in the solid state. Computations suggest that carbene-stabilized neutral diborenes favor a planar conformation as observed in **8**. Surprisingly, compound **10** exhibits conformational flexibility through its three polymorphs [i.e., planar **10a**, twisted

10b (18.1° dihedral angle between two CBH planes), and transbent **10c** (trans-bending angle $\theta = 36^{\circ}$); Scheme 6], which may attribute to the flat potential energy surface, the packing effects in crystals, the crystallization conditions, and the size of the NHC ligand.²²

As observed in 8, 10a, and 10b, three-coordinate boron atoms usually adopt a trigonal-planar geometry. Consequently, the pyramidal geometry around the boron atoms in 10c is noteworthy. These are the first pyramidal three-coordinate boron atoms observed in an acyclic environment.³⁹ The B=B doublebond distances of 10a [1.602(5) Å] and 10b [1.582(4) Å], similar to those of 8 and diborane dianions, are about 0.1 Å shorter than that of **10c** [1.679(9) Å]. However, this elongated B=B bond distance in 10c does not substantially decrease the B-B bond order [Wiberg (1.408) and nonlocalized molecular orbital (NLMO)/natural population analysis (NPA) (1.656) bond indices for the B=B bond in planar 8; Wiberg (1.445) and NLMO/NPA (1.515) bond indices for the B=B bond in trans-bent **10**c] and thus adds further support for the dictum "the electronic structure, rather than bond distances, determines the nature of multiple bonds".⁴⁰ The lower-than-2.0 bond orders of these diborenes may be ascribed to the π -back-donation from the boron atoms to the carbenic carbon atoms.⁴¹ Notably, all of the B=B bond distances in 10a-10c are considerably shorter than that [1.795(5) Å] of the corresponding diborane 11. The B=B double-bond character of 10 is also supported by the $\pi_{\rm B=B} \pi^*_{B=B}$ absorption (λ_{max} = 574 nm). The molecular orbital (MO) study of the simplified models $L:(H)B=B(H):L[L:=:C(NHCH)_2]$ of the planar diborene 8 (Figure 4) and trans-bent diborene 10c reveals that the B-B π -bonding dominates the highest occupied molecular orbital (HOMO), whereas HOMO-1 has mixed B–B and B–H σ -bonding character.

The ¹¹B NMR spectral study of neutral diborenes 8 and 10, diboranes 9 and 11, and borane complexes L:BH₃ and L':BH₃ indicates that with the number of hydrides on the boron atom increases from 1 to 2 and then to 3 and the corresponding ¹¹B resonances are shifted upfield from about +24 ppm (25.30 ppm for 8; 23.45 ppm for 10) to about -31.40 ppm (-31.62 ppm for 9; -31.20 ppm for 11) and then to about -36.0 ppm (-35.38 ppm for L:BH₃; -36.80 ppm for L':BH₃).^{21,42}

The presence of hydride groups in compounds 8-11 has been ascribed to the well-documented alkali-metal-mediated hydrogen abstraction from the solvent.^{43,44} Recently, we discovered that the NHC itself might also serve as the hydride source. The potassium graphite reduction of $[L:B(NPr_2)Cl]^+Cl^-$ (12; Figure 5a),

Scheme 5. Synthesis of Carbene-Stabilized Neutral Diborene, 8, and Diborane, 9

Figure 3. Molecular structures of 8 and 9 (hydrogen atoms on carbon are omitted for clarity).

Scheme 6. Polymorphic Structures of 10

prepared by combining ligand I with (Prⁱ₂N)BCl₂, did not afford diborene 14, but compound 13 (Scheme 7) formed instead.²⁰ The strong steric hindrance of the bulky NHC ligand and the diisopropylamino group in 12 may be an important reason for our failure to prepare 14 (Figure 5b).

Borenium 12 contains a three-coordinate, trigonal-planar boron cation (Figure 5a), while the central boron atom in 13 is four-coordinate and adopts a distorted tetrahedral geometry because of the insertion of boron into the benzylic C–H bond of the ligand, forming a six-membered C₄NB cycle (Figure 6). It has been reported that the highly reactive boranediyl intermediate *m*-terphenyl-B: could insert into the C–C bond of the substituent of the *m*-terphenyl ligand.⁴⁵ Notably, the C–B bond distance of 1.599(3) Å in 12 is about 0.05 Å shorter than that in 13 [1.657(2) Å]. The ¹¹B NMR resonance of 12 (30.2 ppm) shifts downfield compared to that of 13 (–12.9 ppm). Both the short C–B bond and the downfield ¹¹B NMR resonance of 12 are in accordance with the electron deficiency of the borenium cation in 12.

NHC-STABILIZED NEUTRAL Ga₆ OCTAHEDRON

Although the NHC ligands can readily form adducts with gallium halides, the alkali reduction of L:GaCl₃ only led to the isolation of gallium metal powder and a free NHC ligand. Utilizing a different strategy, we reduced the NHC-complexed mesitylgallium dichloride, L'':Ga(Mes)Cl₂.⁴⁶ When L'':Ga(Mes)Cl₂ was combined with potassium graphite (1:3) in hexane, a pale-yellow $[L'':Ga(Mes)Cl_2]$ dimer, **15**, was isolated. However, the potassium metal reduction of L'':Ga(Mes)Cl₂ in toluene (1:2) led to the formation of a ruby-red L'':Ga[Ga₄Mes₄]Ga:L'' octahedron, **16**.

The gallium atoms in compound 15, in the formal gallium oxidation state of +2, are four-coordinate and adopt distorted tetrahedral geometries (Figure 7). The Ga-Ga single bond distance (2.447 Å) in **15** compares well to those (2.425–2.459 Å) in the gallium(II) iodide amine and phosphane complexes.⁴⁷ The formation of compound 16 is quite surprising because its formation involves the unexpected ligand cleavage. The octahedral Ga₆ core in 16 is aggregated by two carbene-coordinated gallium(0) atoms at the axial positions and four Mes-substituted gallium(I) atoms at the equatorial sites (Figure 7). Each of the six gallium atoms is five-coordinate. The fact that the diagonal $Ga(3) \cdots Ga(3a)$ distance of 3.443 Å is about 0.2 Å shorter than the Ga(1) $\cdot \cdot \cdot$ Ga(1a) (3.656 Å) and Ga(2) $\cdot \cdot \cdot$ Ga(2a) (3.671 Å) diagonal separations indicates a tetragonal compression⁴⁸ of the Ga₆ octahedron, which is due to the oxidation state difference of the axial gallium(0) atoms and the equatorial gallium(I) atoms.⁴⁹ Three two-fold axes through the $Ga(1)\cdots Ga(1A)$,

Figure 4. Representations of the frontier orbitals of the simplified model of 8.

Figure 5. (a) Molecular structure of the 12 cation (thermal ellipsoids represent 30% probability; hydrogen atoms are omitted for clarity). Selected bond distances (Å) and angles (deg): C(1)-B(1) 1.599(3), B(1)-Cl(1) 1.787(3), B(1)-N(3) 1.368(3); C(1)-B(1)-N(3) 126.3(2), C(1)-B(1)-Cl(1) 111.91(18), Cl(1)-B(1)-N(3) 121.79(19). (b) Space filling model of 12.

Scheme 7. Low-Oxidation-State Boron-Mediated C-H Bond Activation of the NHC Ligand

 $Ga(2)\cdots Ga(2A)$, and $Ga(3)\cdots Ga(3A)$ diagonals constitute the D_2 symmetry of 16. The nucleus-independent chemical shift (NICS)⁵⁰ value of -10.2, computed in the cluster center

Figure 6. Molecular structure of 13 (thermal ellipsoids represent 30% probability; hydrogen atoms on carbon are omitted for clarity). Selected bond distances (Å) and angles (deg): C(1)-B(1) 1.657(2), C(25)-B(1) 1.689(2), B(1)-H(1) 1.136(15), B(1)-N(3) 1.507(2); C(1)-B(1)-N(3) 116.61(13), C(1)-B(1)-C(25) 100.03(11), C(25)-B(1)-N(3) 116.99(13), C(1)-B(1)-H(1) 106.5(8), C(25)-B(1)-H(1) 106.4(7), N(3)-B(1)-H(1) 109.3(7).

at the PW91PW91/6-311+G^{**} level, confirms the aromatic (metalloaromatic) nature of **16**. The NICS value of -10.2 for **16** is, however, weaker than other group 13 octahedral dianion clusters, such as $[Ga_6H_6]^{2-}$ (NICS = -27.3), $[Al_6H_6]^{2-}$ (NICS = -25.1), and $[B_6H_6]^{2-}$ (NICS = -27.5^{51}). Like the isoelectronic $[Ga_6\{Si(CMe_3)_3\}_4(CH_2C_6H_5)_2]^{2-}$ dianion,⁵² **16** bears 14 skeletal electrons and is in accordance with the Wade–Mingos rules.²⁹ Neutral Ga_6R_6 [R = SiMe(SiMe_3)_2]^{52} has only 12 skeletal electrons and thus exhibits a Jahn–Teller-distorted *precloso* octahedral Ga_6 core. In contrast, dianionic $Ga_6R_8^{2-}$ [R = $Si(C_6H_5)_2Me$] shows a planar Ga_6 frame that has been observed in β -gallium.⁵³

The synthesis of 16 prompted us to extend this strategy to other group 13 elements. Thus, we targeted the boron analogue of 16. However, the potassium reduction of L'':B(Ph)Cl₂, quantitatively prepared by combining ligand III with B(Ph)Cl₂ in hexane, did not afford the expected boron octahedron but rather a carbene-stabilized Ph(H)B–B(H)Ph dimer (17; Scheme 8).²⁰ X-ray structural analysis of 17 (Figure 8) reveals that the central B–B single bond [1.796(3) Å] is comparable to those in 9 [1.828(4) Å] and 11 [1.795(5) Å]. Since they were first observed in 1990s,⁵⁴ dihydrogen bonds have attracted increasing attention because of their critical roles in molecular aggregation, stabilization of molecular conformations, and proton-transfer reactions.⁵⁵ Interestingly, in 17, two short intramolecular [C-H^{δ +…H^{δ}-B] dihydrogen bonds, namely, 1.871 Å [C(21)–H(21)…H(2)–B(2)] and 1.940 Å [C(4)–H(4)…H(1)–B(1)], have been}

Figure 7. Molecular structures of compounds 15 and 16 (hydrogen atoms are omitted for clarity).

Scheme 8. Synthesis of Compound 17

observed. Both of them are not only significantly shorter than the sum of the van der Waals radius for the $[C-H^{\delta+}\cdots H^{\delta-}-B]$ system $(2.65 \text{ Å})^{56}$ but also shorter than the intramolecular $[C-H^{\delta+}\cdots H^{\delta-}-B]$ dihydrogen bonds observed in 8,9'-[*closo*-[3-Co(η^{5} -C₅H₅)]-1,2-C₂B₉H₁₀]₂ (1.994 and 2.097 Å).⁵⁷ These very short intramolecular dihydrogen bonds in 17 may contribute to the gauche conformation adopted by this molecule.

Considering the similar chemical properties between aluminum and gallium, the homologous aluminum octahedron is expected to be isolated. Certainly, with tuning of the electronic and steric properties of the NHC ligands, "carbene stabilization" would be a promising strategy to stabilize intriguing main-group clusters.

NHC-STABILIZED DISILICON AND BIS-SILYLENE

In the well-known low-oxidation-state silicon compounds, disilenes and disilynes, the silicon atoms are in the formal oxidation states of +2 and +1, respectively. Silicon, in its elemental

Figure 8. Molecular structure of 17 {thermal ellipsoids represent 30% probability; hydrogen atoms on carbon [except for C(4) and C(21)] are omitted for clarity}. Selected bond distances (Å) and angles (deg): B(1)-B(2) 1.796(3), B(1)-C(1) 1.629(2), B(1)-C(12) 1.637(2), B(1)-H(1) 1.147(16), B(2)-C(18) 1.630(2), B(2)-C(29) 1.631(2), B(2)-H(2) 1.139(16); C(1)-B(1)-B(2) 108.89(12), C(1)-B(1)-C(12) 107.96(12), C(12)-B(1)-B(2) 117.62(12), C(18)-B(2)-B(1) 109.67(12), C(18)-B(2)-C(29) 110.21(13), C(29)-B(2)-B(1) 117.70(13).

form (i.e., in the oxidation state of zero), is a ubiquitous semiconductor. Thus, the synthesis of compounds containing silicon atoms in the formal oxidation state of zero is interesting because such silicon(0) compounds may provide a unique platform from which a variety of novel low-oxidation-state silicon compounds may be accessed. The progression from disilene, to disilyne, and then to carbene-stabilized disilicon may be envisioned as a function of the ligand (Scheme 9).

Thus, we investigated the potassium graphite reduction of L: $SiCl_4$ (3).²³ When 3 was combined with KC₈ (3:KC₈ = 1:4) in THF, only carbene-stabilized disilicon, L:Si=Si:L (18), was isolated as dark-red crystals in 23.2% yield. However, when the potassium graphite reduction of 3 (1:6) was performed in hexane, a carbene-stabilized bis-silylene, L:(Cl)Si-Si(Cl):L (19), was isolated as orange-red crystals. Meanwhile, compound 18 could also be isolated as a minor product. Compound 19 may be regarded as an intermediate of the transformation from 3 to 18. Indeed,

combining 3 with KC₈ (3:KC₈ = 1:2) in toluene results in the isolation of another stable intermediate, L:SiCl₂ (L: = I).²⁸

Compound 18 (in C_i symmetry) contains an intriguing :Si=Si: core (Figure 9). The Si=Si double-bond distance of 18 [2.230(2) Å] compares well to the reported disilene bond distances (from 2.14 to 2.29 Å)58 and the computed (2.249 Å, BHLYP)⁵⁹ and experimental (2.246 Å)⁶⁰ bond distance of Si₂. However, this value is marginally shorter than that in OC:Si= Si:CO (2.310 Å, B3LYP)⁶¹ and singlet Si₂H₂²⁻ (2.288 Å, B3LYP).⁶² The Si-Si double-bond character of 18 is also supported by the $\pi_{Si=Si} - \pi^*_{Si=Si}$ absorption ($\lambda_{max} = 468$ nm, in THF), which is within the range of the reported UV absorption maxima (390–480 nm) of stable disilenes.⁵⁸ The ²⁹Si chemical shift of 18 was observed at 224.5 ppm, which compares to the resonances (50-155 ppm) of disilenes.⁵⁸ The X-ray structural data are indispensible in assessing the formal oxidation state of silicon atoms in 18. The silicon atoms in 18 are only twocoordinate and adopt trans-bent geometries with C-Si-Si angles of $93.57(11)^\circ$. The 1.9271(15) Å Si-C bond distance,

Figure 9. Molecular structure of 18 (hydrogen atoms are omitted for clarity).

similar to that [1.928(2) Å] in L:SiCl₄, corresponds to a Si–C single bond. Moreover, the planes of the imidazole rings of the ligands are perpendicular to the Si(1)=Si(1A) vector [the N(1)-C(1)-Si(1)-Si(1A) torsion angle = 91.01°]. All of these structural features are supportive of Si(0) atoms in **18**. If the oxidation states of silicon atoms are +2, the C₃N₂SiSiC₃N₂ core would be expected to be planar with short C=Si double bonds and a linear C-Si-Si-C linkage.⁶³ The almost-90° trans-bent geometry around the Si₂ core is consistent with a weak hybridization between the 3s and 3p orbitals of silicon atoms in **18**, which is also confirmed by NBO analysis. While the Si-Si σ -bond (with 82.2% p character) and π -bond (with 99.6% p character) have mainly p character, the silicon lone-pair orbitals (with 72.8% s character) have predominantly s character.²³

Density functional theory (DFT) computations on the simplified L:Si=Si:L (where L: is :C{N(C₆H₅)CH}₂) model, **18**-**Ph**, support this bonding analysis.²³ The Wiberg bond index (WBI) of 1.73 supports the presence of a Si=Si double bond in **18**. The HOMO corresponds to the Si–Si π bond, whereas the HOMO–1 is dominated by the Si–Si σ bond. The HOMO–2 is one of the two nonbonding lone-pair MOs (Figure 10). The MO profile of **18-Ph** is quite different from that of the triplet (X³Σ_g⁻) ground state of the isolated, coordinatively unsaturated, Si₂ molecule, wherein each of the two degenerate $1\pi_{\mu}$ MOs are occupied by one electron of the same spin.⁶⁴

Computations suggest that the uncomplexed Si₂Cl₂ molecule adopts a doubly bridged $(C_{2\nu})$ Si $(\mu$ -Cl)₂Si geometry around 2.361 Å Si–Si single bond with a 102.1° dihedral angle between the Si₂Cl rings.²³ In contrast, with the complexation of carbene ligands to the silicon atoms in bis-silylene 19, the chlorines are not bridging (Figure 11). The two L:SiCl fragments are linked via a Si–Si single bond (2.393(3) Å) and adopt a gauche conformation (the Cl(1)-Si(1)-Si(2)-Cl(2) torsion angle is -46.5°). Each three-coordinate Si(I) atom in 19 adopts a trigonal pyramidal geometry. The bond angle sum of 308.0° (av) at the silicon atoms in 19 compares very well with that in $(tBu_2MeSi)_2SiFLi$. $(THF)_3$ $(307.6^\circ)^{65}$ and the computed value for Ph₂Si:CNPh $(306.8^\circ)^{.66}$ The pyramidal geometry at each silicon atom in **19** results from significant lone electron pair character on both Si atoms. The visible absorption maximum of 19 was observed at $\lambda_{\max} = 510 \text{ nm}$ (in hexane), which is comparable to that ($\lambda_{\max} =$ 478 nm) of an intramolecularly base-stabilized three-coordinate silylene.⁶⁷ The ²⁹Si resonance of **19** (38.4 ppm) is between 78.3 ppm of $[C(H)N(tBu)]_2Si^{68}$ and 14.6 ppm of $[PhC(NtBu)_2]$ -SiCl,⁶⁹ but at a considerably lower field than those (-48.6 to -57.4 ppm) of silvlene-isocyanide complexes.⁶⁶

The nature of the bonding in **19** was further probed by B3LYP/ 6-311+G** DFT computations on the simplified L:(Cl)Si-Si(Cl):

НОМО НОМО-1 НОМО-2

Figure 10. Representation of the HOMO, HOMO-1, and HOMO-2 of 18-Ph.

L (L: =:C(NHCH)₂) model, **19-H**.²³ The localized molecular orbitals (LMOs; Figure 12) reveal a Si–Si σ bonding orbital and two nonbonding lone-pair orbitals, one at each silicon atom. Natural bonding orbital (NBO) analysis indicates that the silicon–silicon σ single bond (WBI = 0.9327) has 12.0% *s*, 87.5% p, and 0.5% d character, while the nonbonding Si lone pair orbitals have 68.6% s, 31.3% p, and 0.1% d character.

Isolation of the bis-silylene carbene complex 19 also served as a template for subsequent stabilization of bis-silylene by a monoanionic bidentate amidinate ligand (Scheme 10).⁷⁰

Carbene-stabilized digermanium L:Ge=Ge:L, isostructural to 18, has recently been synthsized using the unique RMg–MgR (R = [(MesNCMe)₂CH]⁻) reducing agent.⁷¹ It should be pointed out that divalent carbon(0) species, C(NHC)₂, have also been stabilized by N-heterocyclic carbene ligands,^{72,73} which confirms the theoretical prediction about these types of carbodicarbenes.^{74,75} These exciting discoveries suggest a bright future for the application of carbenes in low-oxidation-state main-group chemistry.

NHC-STABILIZED DIPHOSPHORUS (P₂) AND DIA-RSENIC (As₂)

Phosphorus and arsenic, unlike their lighter congener nitrogen, have extensive allotropy. In contrast to the well-known, metastable tetrahedral allotropes of white phosphorus (P₄) and yellow arsenic (As₄), diatomic allotropes P₂ and As₂ are highly reactive and only persistent at high temperatures.^{76,77} The recent report of mild thermal extrusion of P₂ from niobium diphosphaazide complexes indicates that P₂ may be accessed under mild reaction conditions.⁷⁸ The fact that the bond energy of N₂ (226 kcal/mol) is almost twice that of P₂ (116 kcal/mol)⁷⁹ and approaches thrice that of As₂ (83 kcal/mol)⁸⁰ suggests a considerably diminished importance of p– π bonding among third- and fourth-period main-group elements.⁸¹ Thus, E₂ cores

Figure 11. Molecular structure of 19 (hydrogen atoms omitted for clarity).

in the corresponding P₂ and As₂ complexes may assume either bonding mode A (triply bonded dipnictogen) or B (singly bonded dipnictinidene) (Scheme 11). Free P₂ and As₂, assuming bonding mode A, have been reported to function as a four-, six-, or eight-electron-donor ligand (C–F; Scheme 11) in transitionmetal (M) carbonyl complexes.⁷⁶ The E₂ cores in bonding mode B, featuring four lone electron pairs and unsaturated valence shells, may exhibit both nucleophilic (G)⁸² and electrophilic (H) properties. Inspired by the P₄- and P₁₂-carbene complexes reported by Bertrand and co-workers,^{83,84} we recently reported the synthesis of carbene-stabilized P₂²⁴ and As₂.²⁵ Both L:P–P:L and L:As–As:L belong to the bonding mode H (Scheme 11).

The potassium graphite reduction of hypervalent phosphorusor arsenic-carbene complexes 4-6 affords the carbene-stabilized P₂ or As₂ complexes 20-22, respectively (Scheme 12). Compounds 20-22 were isolated as moisture- and air-sensitive red crystals in moderate yields (20, 56.6%; 21, 20.7%; 22, 19.2%). The lower yield of the carbene-stabilized As₂ complex 22 indicates the increased synthetic challenge of the heavier dipnictinidene carbene complexes descending group 15. Indeed, carbene-stabilized Sb₂ and Bi₂ have yet to be synthesized.

Figure 12. LMOs of the simplified model 19-H. (a) Si-Si σ -bonding orbital; (b) and (c) lone-pair orbitals.

The X-ray structures of **20** and **21** exhibit similar bond distances but different conformations (Figure 13). While **20**, in C_i symmetry, adopts a trans-bent geometry with a C(1)-P(1)-P(1A)-C(1A) torsion angle of 180.0°, **21** displays a gauche conformation [the C(1)-P(1)-P(2)-C(22) torsion angle is 134.1°]. Moreover, DFT computations at the B3LYP/DZP level on the simplified L:P-P:L [where L: is :C(NHCH)₂] model, **20-H**, indicates a C_2 minimum (C-P-P-C torsion angle = 98.6°). This is similar to that of the isolobal equivalent hydrogen persulfide (H-S-S-H torsion angle = 90.6°).⁸⁵ The trend of the C-P-P-C torsion angle change from 180.0° (**20**), to 134.1° (**21**), and then to 98.6° (**20-H**; C_2 minimum) reflects the significant steric effect of the carbene ligands on the conformations of carbene-stabilized P₂ compounds (Scheme 13).

The P–P bond distance of 2.2052(10) Å in **20** compares well to typical P–P single bonds. The C(1)–P(1)–P(1A) bond angle [103.19(6)°] approaches that of (alkyl)(amino)carbene (CAAC)-stabilized P₂, **23** [105.1(2)°; Scheme 14], which was synthesized by the carbene-induced fragmentation of P₄.⁸⁶ Interestingly, the two imidazole rings in **20** are almost coplanar to the central P₂ fragment [N(2)–C(1)–P(1)–P(1A) torsion angle = 2.3°], compared to that in **21** (8.2°, av.). The unsymmetrical bisect of the imidazole ring by the P–C bond [with a 18.3° difference between N(1)–C(1)–P(1) and N(2)–C(1)–P(1)

Scheme 12. Synthesis of Carbene-Stabilized P₂ Complexes 20 and 21 and As₂ Complex 22

angles] may attribute to the steric repulsion between the very bulky carbene ligands. The P–C bond distance [1.7504(17) Å] in **20**, between the P=C double-bond distances (1.65–1.67 Å) of the nonconjugated phosphaalkenes⁸⁷ and the normal P–C single-bond distance {i.e., the P–C_{Ph} bond distance [1.839(5) Å] in L:P(Ph) (L: = II)}⁸⁸, is about 0.03 Å longer than that [1.719(7) Å] in CAAC-stabilized P₂ (**23**).⁸⁶

Two canonical forms [A (bis-phosphinidene) and B (bisphosphaalkene) in Scheme 15] may be used to interpret the bonding in **20**, **21**, and **23**. Indeed, canonical forms **A** and **B** are akin to two resonance forms of carbene phosphinidene adducts.⁸⁹ The low-field ³¹P chemical shift (54.2 ppm) of **23** is similar to those of the diphosphabutadienes (34–54 ppm),⁹⁰ which, coupled with the short P–C bond distance [1.719(7) Å] in **23**, suggests that **23** possesses a 2,3-diphosphabutadiene structure (**B**). In contrast, the high-field ³¹P chemical shifts of **20** (–52.4 ppm) and **21** (–73.6 ppm), coupled with the

Scheme 13. Steric Effect of the NHC Ligands on the Conformation of the NHC-P₂ Adduct

Figure 13. Molecular structure of carbene-stabilized P2 20 and 21 (hydrogen atoms are omitted for clarity).

Scheme 15. Canonical Forms of Carbene-Stabilized P₂ Molecules 20, 21, and 23

Figure 14. LMOs of the simplified model of **20** (L: = :C(NHCH)₂) with C_i symmetry: (a) P–P σ -bonding orbital; (b) P–C σ -bonding orbital; (c) lone-pair orbital with π back-donation to the empty p orbital of C_{NHC} ; (d) lone-pair orbital.

relatively long P–C bond distances (about 1.75 Å), favor A as the predominate formulation (Scheme 15). These experimental observations are consistent with the higher electrophilicity of the CAAC ligands than NHCs.⁸⁶

The LMOs of the simplified models $[L: = :C(NHCH)_2]$ of **20** (optimized in C_{2h} symmetry, as shown in Figure 14) and **21** include one P–P σ bond, one P–C σ bond, and two lone-pair orbitals on each phosphorus atom. In terms of NBO analysis, as exemplified in the **20-H** model (C_{2h}), **d** has mainly s character (68.8% s, 31.2% p, and 0.0% d), whereas **c** is essentially pure p (0.0% s, 99.8% p, and 0.2% d). Notably, **c** interacts with the empty p orbital of C_{NHC} via p– π back-donation (involving 64.8% phosphorus and 35.2% carbon components), which, however, is not well developed because of the aromaticity of the imidazole ring (the P–C WBI of 1.397). This bonding description is consistent with the structural features of **20** [i.e., coplanarity of the imidazole ring with the P₂ unit and the 1.7504(17) Å P–C bond distance]. Moreover, the P–P σ single bond (WBI = 1.004) has mainly p character (87.9% p).

Compound 22, in C_i symmetry, is isostructural to 20 and adopts a trans-bent geometry around the As–As bond [torsion angle of C(1)–As(1)–As(1A)–C(1A) = 180°; Figure 15). This trans-bent conformation may also attribute to the steric repulsion of the ligands because the DFT-optimized structure of the simplified model L:As–As:L (L: = :C(NHCH)₂), 22-H, favors a gauche conformation with C_2 symmetry (C–As–As–C torsion angle = 93.9°, as shown in Figure 15).²⁵ The central As–As bond distance of 2.442(1) Å is almost the same as that (2.44 Å) in gaseous As₄⁹¹ and compares well to the sum of the arsenic singlebond covalent radii (2.42 Å).⁹² The C(1)–As(1)–As(1A) bond angle of 101.11(5)° is about 2° less than the C(1)–P(1)–P(1A) bond angle in 20 [103.19(6)°], while the As–As bond in 22 is about 0.24 Å longer than the P–P bond in 20 [2.205(1) Å].

Figure 15. Molecular structure of the carbene-stabilized As_2 complex 22 (hydrogen atoms are omitted for clarity) and the simplified 22-H model optimized in C_2 symmetry.

Scheme 16. Synthesis of the Carbene-Stabilized Parent Phosphinidene 24

Compound **22** is not only isostructural to the carbene-stabilized P_2 **20**, but also is structurally similar to carbene arsinidene adducts.⁸⁸ Thus, compound **22** may be considered as a diarsinidene complex.

Carbene stabilization denotes a new strategy in approaching the P₂ and As₂ molecules. Furthermore, the reactivity of these molecules should prove interesting. While the electrochemical oxidation of **20**, explored by Bertrand, resulted in a carbenestabilized P₂²⁺ dication,⁹³ we recently investigated the lithium reduction of **20** (Scheme 16), which results in the isolation of yellow crystals of lithiated-NHC parent phosphinidene adduct, L':P-H (L': = :C{[N(2,6-*i*Pr₂C₆H₃)]₂CHCLi(THF)₃}), **24**.²⁶ Although the mechanism is unclear, the formation of **24** involves both the cleavage of the central P–P bond of **20** and the lithiummediated C–H activation of the imidazole ring.

The ¹H NMR spectrum of **24** shows that the P–H doublet $[\delta = 1.86 \text{ ppm}, {}^{1}J(\text{PH}) = 167 \text{ Hz}]$ is shifted upfield compared to that of $[(\text{CH}_{3})_{2}\text{N}]_{2}\text{C}=\text{P}-\text{H} [\delta = 3.10 \text{ ppm}, {}^{1}J(\text{PH}) = 159 \text{ Hz}].^{94}$ This may be attributed to the stronger net electron-donating ability of the lithiated NHC ligand in **24** than that of the $(\text{R}_{2}\text{N})_{2}\text{C}$: ligand in $[(\text{CH}_{3})_{2}\text{N}]_{2}\text{C}=\text{P}-\text{H}$. The presence of the P–H fragment in **24** also is unambiguously confirmed by the ¹H-coupled ³¹P NMR spectrum. The ³¹P doublet at –143.0 ppm (${}^{1}J = 171 \text{ Hz}$) is upfield when compared to that $[\delta = -62.6 \text{ ppm}, {}^{1}J(\text{PH}) = 159 \text{ Hz}]$ of $[(\text{CH}_{3})_{2}\text{N}]_{2}\text{C}=\text{P}-\text{H}^{94}$ and those $[\delta = 23.8 \text{ ppm}, {}^{1}J(\text{PH}) = 138 \text{ Hz}; \delta = 34.3 \text{ ppm}, {}^{1}J(\text{PH}) = 174 \text{ Hz}]$ of *P*-hydrogeno-*C*-phosphinophosphaalkenes.⁹⁵

While being between the typical P–C single-bond distances (from 1.83 to 1.88 Å)²⁶ and the reported P=C double-bond distances (1.65–1.67 Å) for the nonconjugated phosphaalkenes,⁸⁷ the P–C bond in **24** [1.763(2) Å; Figure 16] compares well to that computed for $[CH(CH_3)N]_2CP-H$ (1.770 Å)⁹⁶ and is slightly longer than the experimental value for $[(CH_3)_2N]_2C=$ P–H [1.740(1) Å].⁹⁷ As a comparison, the P=C double bonds

Figure 16. Molecular structure of the carbene-stabilized parent phosphinidene 24 (hydrogen atoms on carbon are omitted for clarity).

in *P*-hydrogeno-*C*-phosphinophosphaalkenes were reported to be 1.713(2) Å.⁹⁵ Like the reported carbene phosphinidene and bisphosphinidene (**20** and **21**) adducts, two extreme P–C bonding modes, namely, phosphinidene and phosphaalkene, may be drawn for **24**. However, the pronounced high-field ³¹P chemical shift of **24** indicates that the π -bonding interaction between P and C_{NHC} is not well developed. Thus, **24** may be regarded as a carbene-stabilized parent phosphinidene.

CONCLUSION

NHCs have demonstrated unique capabilities in stabilizing highly reactive, low-oxidation-state, main-group molecules. Carbene-stabilized $E(0)_2$ molecules, L:EE:L (E = Si, Ge, P, As), are particularly noteworthy because they not only may act as precursors for novel group 14 and 15 molecules but also may serve as templates for the stabilization of other low-oxidation-state, maingroup elements. The stage is now set for new discoveries of novel carbene-stabilized molecules with intriguing properties.

ASSOCIATED CONTENT

Supporting Information. Full details of the syntheses and X-ray crystal determination, including CIF files. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: robinson@chem.uga.edu. Tel: 706-542-1843. Fax: (+1) 706-542-9454.

ACKNOWLEDGMENT

We are grateful to the National Science Foundation for support of this work. We are thankful to a number of talented co-workers and colleagues. In particular, the authors are indebted to Professors R. B. King, H. F. Schaefer, and P. v. R. Schleyer for all that they have taught us.

REFERENCES

- (1) Power, P. P. J. Chem. Soc., Dalton Trans. 1998, 2939–2951.
- (2) Cowley, A. H. J. Organomet. Chem. 2004, 689, 3866-3872.

- (3) Wang, Y.; Robinson, G. H. Chem. Commun. 2009, 5201-5213.
- (4) Power, P. P. In Struct. Bonding (Berlin); Roesky, H. W., Atwood,
- D. A., Eds.; Springer-Verlag: Berlin, 2002; Vol. 103, pp 57-84.
 - (5) Wang, Y.; Robinson, G. H. Organometallics 2007, 26, 2-11.
 - (6) Rivard, E.; Power, P. P. Inorg. Chem. 2007, 46, 10047–10064.
 - (7) Fischer, R. C.; Power, P. P. Chem. Rev. 2010, 110, 3877-3923.

(8) Schnepf, A.; Doriat, C.; Möllhausen, E.; Schnöckel, H. Chem. Commun. 1997, 2111-2112.

(9) Doriat, C. U.; Friesen, M.; Baum, E.; Ecker, A.; Schnöckel, H. Angew. Chem., Int. Ed. Engl. **1997**, 36, 1969–1971.

(10) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361–363.

(11) Nolan, S. P. *N-Heterocyclic Carbenes in Synthesis*; Wiley-VCH: Weinheim, Germany, 2006.

(12) Carmalt, C. J.; Cowley, A. H. Adv. Inorg. Chem. 2000, 50, 1-32.

(13) Carmalt, C. J. In *Encyclopedia of Inorganic Chemistry*, 2nd ed.; King, R. B., Ed.; Wiley & Sons: Chichester, U.K., 2005; pp 2870–2888.

(14) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem.
 Rev. 2000, 100, 39–91.

(15) Gusev, D. G. Organometallics 2009, 28, 6458-6461.

(16) Arduengo, A. J., III; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.; Marshall, W. J.; Unverzagt, M. *Tetrahedron* **1999**, *55*, 14523–14534.

(17) Kuhn, N.; Kratz, T. Synthesis 1993, 561-562.

(18) Wang, Y.; Xie, Y.; Abraham, M. Y.; Wei, P.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *J. Am. Chem. Soc.* **2010**, *132*, 14370–14372.

(19) Wang, Y.; Xie, Y.; Abraham, M. Y.; Wei, P.; Schaefer, H. F., III;

Schleyer, P. v. R.; Robinson, G. H. Organometallics 2011, 30, 1303–1306.
(20) See the Supporting Information for synthetic and crystallographic details.

(21) Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *J. Am. Chem. Soc.* **200**7, *129*, 12412–12413.

(22) Wang, Y.; Quillian, B.; Wei, P.; Xie, Y.; Wannere, C. S.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *J. Am. Chem. Soc.* **2008**, *130*, 3298–3299.

(23) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *Science* **2008**, 321, 1069–1071.

(24) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. **2008**, 130, 14970–14971.

(25) Abraham, M. Y.; Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *Chem.—Eur. J.* **2010**, *16*, 432–435.

(26) Wang, Y.; Xie, Y.; Abraham, M. Y.; Gilliard, R. J., Jr.; Wei, P.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. *Organometallics* **2010**, *29*, 4778–4780.

(27) Kuhn, N.; Kratz, T.; Bläser, D.; Boese, R. Chem. Ber. 1995, 128, 245-250.

(28) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D. Angew. Chem., Int. Ed. **2009**, 48, 5683–5686.

(29) Molecular Clusters of the Main Group Elements; Driess, M., Nöth, H., Eds.; Wiley-VCH: Weinheim, Germany, 2004.

(30) Grigsby, W. J.; Power, P. P. Chem.—Eur. J. 1997, 3, 368–375.
(31) Moezzi, A.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc.
1992, 114, 2715–2717.

(32) Wu, H.-S.; Qin, X.-F.; Xu, X.-H.; Jiao, H.; Schleyer, P. v. R. J. Am. Chem. Soc. 2005, 127, 2334–2338.

(33) Mitoraj, M. P.; Michalak, A. *Inorg. Chem.* 2011, 50, 2168–2174.
(34) Bonyhady, S. J.; Collis, D.; Frenking, G.; Holzmann, N.; Jones,

C.; Stasch, A. Nat. Chem. 2010, 2, 865–869.

(35) Moezzi, A.; Bartlett, R. A.; Power, P. P. Angew. Chem., Int. Ed. 1992, 104, 1082–1083.

(36) Nöth, H.; Knizek, J.; Ponikwar, W. Eur. J. Inorg. Chem. 1999, 1931–1937.

(37) Wang, Z.-X.; Chen, Z.; Jiao, H.; Schleyer, P. v. R. J. Theoret. Comput. Chem. 2005, 4, 669–688.

(38) Kaufmann, E.; Schleyer, P. v. R. Inorg. Chem. 1988, 27, 3987–3992.

(39) Giju, K. T.; Phukan, A. K.; Jemmis, E. D. Angew. Chem., Int. Ed. 2003, 42, 539–542.

(40) Xie, Y.; Grev, R. S.; Gu, J.; Schaefer, H. F.; Schleyer, P. v. R.; Su,

- J.; Li, X.-W.; Robinson, G. H. J. Am. Chem. Soc. 1998, 120, 3773–3780.
 (41) Scheschkewitz, D. Angew. Chem., Int. Ed. 2008, 47, 1995–1997.
 (42) Yamaguchi, Y.; Kashiwabara, T.; Ogata, K.; Miura, Y.; Nakamura,
- Y.; Kobayashi, K.; Ito, T. *Chem. Commun.* **2004**, 2160–2161.
- (43) Garst, J. F. Acc. Chem. Res. 1971, 4, 400–406.
- (44) Cheng, T. C.; Headley, L.; Halasa, A. F. J. Am. Chem. Soc. 1971, 93, 1502–1503.
- (45) Grigsby, W. J.; Power, P. P. J. Am. Chem. Soc. **1996**, 118, 7981–7988.
- (46) Quillian, B.; Wei, P.; Wannere, C. S.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. **2009**, 131, 3168–3169.
- (47) Baker, R. J.; Bettentrup, H.; Jones, C. Eur. J. Inorg. Chem. 2003, 2446-2451.
 - (48) Dong, Z.-C.; Corbett, J. D. Inorg. Chem. 1996, 35, 2301-2306.
 - (49) Wolf, R.; Uhl, W. Angew. Chem., Int. Ed. 2009, 48, 6774-6776.
- (50) Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. *Chem. Rev.* **2005**, *105*, 3842–3888.
- (51) King, R. B.; Heine, T.; Corminboeuf, C.; Schleyer, P. v. R. J. Am. Chem. Soc. 2004, 126, 430–431.
- (52) Linti, G.; Coban, S.; Dutta, D. Z. Anorg. Allg. Chem. 2004, 630, 319–323.
- (53) Donchev, A.; Schnepf, A.; Baum, E.; Stosser, G.; Schnöckel, H. Z. Anorg. Allg. Chem. 2002, 628, 157–161.
- (54) Wessel, J.; Lee, J. C., Jr.; Peris, E.; Yap, G. P. A.; Fortin, J. B.; Ricci, J. S.; Sini, G.; Albinati, A.; Koetzle, T. F.; Eisenstein, O.; Rheingold,
- A. L.; Crabtree, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2507–2509. (55) Bakhmutov, V. I. Dihydrogen Bonds: Principles, Experiments, and
- Applications; John Wiley & Sons, Inc.: New York, 2008.
- (56) Flores-Parra, A.; Sanchez-Ruiz, S. A.; Guadarrama, C.; Nöth, H.; Contreras, R. *Eur. J. Inorg. Chem.* **1999**, 2069–2073.
- (57) Planas, J. G.; Vinas, C.; Teixidor, F.; Light, M. E.; Hursthouse,
 M. B. J. Organomet. Chem. 2006, 691, 3472–3476.
- (58) Weidenbruch, M. In *The Chemistry of Organic Silicon Compounds*; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, U.K., 2001; Vol. 3; pp 391–428.
- (59) Pak, C.; Rienstra-Kiracofe, J. C.; Schaefer, H. F., III J. Phys. Chem. A 2000, 104, 11232–11242.
- (60) Nimlos, M. R.; Harding, L. B.; Ellison, G. B. J. Chem. Phys. 1987, 87, 5116–24.
- (61) Zhou, M.; Jiang, L.; Xu, Q. J. Chem. Phys. 2004, 121, 10474–10482.
- (62) Takahashi, M.; Kawazoe, Y. Organometallics 2005, 24, 2433–2440.
- (63) Dyker, C. A.; Bertrand, G. Science 2008, 321, 1050-1051.
- (64) Krapp, A.; Bickelhaupt, F. M.; Frenking, G. Chem.—Eur. J. 2006, 12, 9196–9216.
- (65) Molev, G.; Bravo-Zhivotovskii, D.; Karni, M.; Tumanskii, B.; Botoshansky, M.; Apeloig, Y. J. Am. Chem. Soc. **2006**, 128, 2784–2785.
- (66) Takeda, N.; Suzuki, H.; Tokitoh, N.; Okazaki, R.; Nagase, S. J. Am. Chem. Soc. **1997**, 119, 1456–1457.
- (67) Corriu, R.; Lanneau, G.; Priou, C.; Soulairol, F.; Auner, N.; Probst, R.; Conlin, R.; Tan, C. J. Organomet. Chem. **1994**, 466, 55–68.
- (68) Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.; Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. J. Am. Chem. Soc.
- **1994**, *116*, 2691–2692. (69) So, C.-W.; Roesky, H. W.; Magull, J.; Oswald, R. B. Angew. Chem., Int. Ed. **2006**, 45, 3948–3950.
- (70) Sen, S. S.; Jana, A.; Roesky, H. W.; Schulzke, C. Angew. Chem., Int. Ed. 2009, 48, 8536–8538.
- (71) Sidiropoulos, A.; Jones, C.; Stasch, A.; Klein, S.; Frenking, G. Angew. Chem., Int. Ed. **2009**, 48, 9701–9704.
- (72) Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 3206–3209.
- (73) Fuerstner, A.; Alcarazo, M.; Goddard, R.; Lehmann, C. W. Angew. Chem., Int. Ed. **2008**, 47, 3210–3214.

(74) Tonner, R.; Oexler, F.; Neumueller, B.; Petz, W.; Frenking, G. Angew. Chem., Int. Ed. 2006, 45, 8038–8042.

- (75) Tonner, R.; Frenking, G. Angew. Chem., Int. Ed. 2007, 46, 8695–8698.
- (76) Cotton, F. A.; Wilkinson, G.; Bochmann, M.; Murillo, C. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1998.
- (77) Gmelin Handbuch der anorganischen Chemie, Arsen; Verlag Chemie: Weinheim, Germany, 1952; Vol. 17.
- (78) Piro, N. A.; Figueroa, J. S.; McKellar, J. T.; Cummins, C. C. Science **2006**, 313, 1276–1279.
- (79) Dasent, W. E. Inorganic Energetics: An Introduction, 2nd ed; Cambridge University Press: Cambridge, U.K., 1982.
- (80) Mochizuki, Y.; Tanaka, K. Chem. Phys. Lett. 1997, 274, 264-268.
- (81) Kutzelnigg, W. Einführung in die Theoretische Chemie; Wiley-VCH: Weinheim, Germany, 1978; Vol. 2.
- (82) Scherer, O. J.; Ehses, M.; Wolmershauser, G. Angew. Chem., Int. Ed. 1998, 37, 507–510.
- (83) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2007, 46, 7052–7055.
- (84) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2007, 129, 14180–14181.
- (85) Winnewisser, G.; Winnewisser, M.; Gordy, W. J. Chem. Phys. 1968, 49, 3465–3478.
- (86) Back, O.; Kuchenbeiser, G.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. **2009**, 48, 5530–5533.
 - (87) Weber, L. Eur. J. Inorg. Chem. 2000, 2425-2441.
- (88) Arduengo, A. J., III; Calabrese, J. C.; Cowley, A. H.; Dias, H. V. R.; Goerlich, J. R.; Marshall, W. J.; Riegel, B. *Inorg. Chem.* **1997**, 36, 2151–2158.
- (89) Arduengo, A. J., III; Carmalt, C. J.; Clyburne, J. A. C.; Cowley, A. H.; Pyati, R. *Chem. Commun.* **1997**, 981–982.
- (90) Romanenko, V. D.; Kachkovskaya, L. S.; Markovskii, L. N. Zh. Obshch. Khim. **1985**, 55, 2140–2141.
- (91) Maxwell, L. R.; Hendricks, S. B.; Mosley, V. M. J. Chem. Phys. 1935, 3, 699–709.
 - (92) Pyykkoe, P.; Atsumi, M. Chem.-Eur. J. 2009, 15, 186-197.
- (93) Back, O.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. *Nat. Chem.* **2010**, *2*, 369–373.
- (94) Issleib, K.; Leissring, E.; Riemer, M.; Oehme, H. Z. Chem. 1983, 23, 99–100.
- (95) Bourissou, D.; Canac, Y.; Gornitzka, H.; Marsden, C. J.; Baceiredo, A.; Bertrand, G. *Eur. J. Inorg. Chem.* **1999**, 1479–1488.
- (96) Frison, G.; Sevin, A. J. Organomet. Chem. **2002**, 643–644, 105–111.
- (97) Chernega, A. N.; Antipin, M. Y.; Struchkov, Y. T.; Sarina, T. V.; Romanenko, V. D. *Zh. Strukt. Khim.* **1986**, *27*, 78–82.