

Silicon Complexes

 How to cite:
 Angew. Chem. Int. Ed. 2020, 59, 8864–8867

 International Edition:
 doi.org/10.1002/anie.201916395

 German Edition:
 doi.org/10.1002/ange.201916395

Carbene-Stabilized Disilicon as a Silicon-Transfer Agent: Synthesis of a Dianionic Silicon Tris(dithiolene) Complex

Yuzhong Wang, Cynthia A. Tope, Yaoming Xie, Pingrong Wei, Jeffrey L. Urbauer, Henry F. Schaefer III, and Gregory H. Robinson*

Abstract: Reaction of carbene-stabilized disilicon (1) with the lithium-based dithiolene radical (2) affords the first dianionic silicon tris(dithiolene) complex (3). Notably, the formation of 3 represents the unprecedented utilization of carbene-stabilized disilicon (1) as a silicon-transfer agent. The nature of 3 was probed by multinuclear NMR spectroscopy, single-crystal X-ray diffraction, and DFT computations.

As a result of their unique optical, conductive, and magnetic properties, bis(dithiolene) complexes have substantially bolstered the development of transition-metal dithiolene chemistry.^[1] Although reports date to the early 1960s,^[1a,2] the chemistry of transition-metal-based tris(dithiolene) complexes^[2] has not developed in parallel with that of bis(dithiolene) complexes. Correspondingly, there is a paucity of reports of tris(dithiolene) complexes of main-group metals, the literature revealing only (dithiolene)₃ complexes of indium,^[3] tin,^[4] and antimony.^[5] While bis(dithiolene) complexes containing four- and five-coordinate silicon atoms (Figure 1) were first reported nearly two decades ago,^[6] sixcoordinate silicon tris(dithiolene) complexes have not been reported. Nonetheless, complexes containing silicon atoms in high-coordination environments are attracting considerable attention due to their intriguing structural motifs and their capacity as novel reaction intermediates.^[7] Indeed, pyridinebased ligands containing a six-coordinate silicon atom have garnered interest from disparate fields of photo- and electroluminescent materials to biological systems.^[8]

Figure 1. Representative a) four- and b) five-coordinate silicon bis(dithiolene) complexes.

 [*] Dr. Y. Wang, C. A. Tope, Dr. Y. Xie, Dr. P. Wei, Prof. Dr. J. L. Urbauer, Prof. Dr. H. F. Schaefer III, Prof. Dr. G. H. Robinson Department of Chemistry and the Center for Computational Chemistry The University of Georgia Athens, GA 30602-2556 (USA) E-mail: robinson@uga.edu
 Supporting information and the ORCID identification number(s) for

the author(s) of this article can be found under: https://doi.org/10.1002/anie.201916395. The ability of carbenes to stabilize a wide range of lowoxidation state main group species has been well-documented.^[9] The series of carbene-stabilized diatomics, L:EE:L (L:=carbene; E=p-block elements), with E having the formal oxidation state of zero, are noteworthy.^[9c,h] Although the strong σ -donor capabilities of carbenes have largely been touted as the predominant factor in the stabilization of these compounds, it has recently been suggested that London dispersion forces^[10] may also play an important role. Carbenestabilized disilicon, L:Si=Si:L,^[11] (L:=2,6-diisopropylphenylsubstituted NHC; **1** in Scheme 1) has demonstrated unique

Scheme 1. Synthesis of **3** (*R* = 2,6-diisopropylphenyl).

reactivity toward a variety of substrates including Group 13 Lewis acids, transition-metal species, small electrophiles, elemental tellurium, and small gas molecules (i.e., O_2 , N_2O , and CO_2).^[9b,c] Notably, the thermal extrusion of diphosphorus (P₂) from niobium diphosphaazide complexes, as reported by Cummins, provided a novel synthetic route to organodiphosphorus compounds.^[12] The intriguing proposition of L:Si=Si:L serving as a "soluble allotrope"^[13] of silicon, however, has not been experimentally realized. Indeed, **1** would possess particular synthetic utility if the disilicon core of **1** could be liberated from the two carbenes. Herein, we report the synthesis,^[14] structure,^[14] and computations^[14] of the first dianionic silicon tris(dithiolene) complex (**3**), prepared by utilizing carbene-stabilized disilicon (**1**) as a silicon-transfer agent.

We recently synthesized an anionic dithiolene radical **2**^{,[15]} via trisulfurization of the corresponding anionic N-heterocyclic dicarbene (Scheme 1).^[16] Compound **2**[,] may well serve as a convenient synthetic platform from which various main group-based dithiolenes could be synthetically approached. For example, both boron dithiolene radicals^[17] and magnesium dithiolene complexes^[18] have recently been synthesized by utilizing 2: Reaction of 1 with 2 (ca. 1:3 molar ratio) in THF at room temperature produced an orange-red solution, from which 3 may be isolated as yellow-orange crystals in 18.0% yield (Scheme 1). While the mechanism remains obscured, the formation of 3 involves cleavage of both the Si=Si double bond and Si-C_{NHC} bond. Although cleavage of the Si=Si double bond in 1 has been well documented,^[19] reports of the Si-C_{NHC} bond cleavage are rare.^[20] Due to the non-innocent character of the dithiolene ligands, the monoanionic dithiolene radical ligand 2 is readily reduced to the corresponding dithiolate by the $Si_2(0)$ core of 1 during the formation of 3 (correspondingly, the silicon atom is oxidized in this process). The parent solution, from which 3 is crystallized, is extremely oxygen-sensitive (immediately changing color from orange to purple upon exposure to trace amounts of O_2). Such reactivity suggests the presence of highly redox-active dithiolate by-products in the parent solution. Multiple attempts to isolate the corresponding byproducts were unsuccessful. Although insoluble in both toluene and THF, 3 is readily soluble in acetonitrile (however, it gradually decomposes overnight).

Compounds containing five- and six-coordinate silicon atoms usually have ²⁹Si chemical shifts at high field (-50 to)-150 ppm for five-coordinate silicon compounds; -130 to -200 ppm for six-coordinate silicon compounds).^[21] The ²⁹Si NMR resonance of -150.8 ppm for **3** (in CD₃CN) is comparable to that of -148.3 ppm (in [D₆]DMSO) reported for [Si(Tm^{Ph})₂]²⁺ dications (Tm^{Ph} = hydro-tris(phenylthioimidazolyl)borate), supporting the presence of a six-coordinate silicon atom in 3.^[22] In contrast, ²⁹Si NMR resonances of the four-coordinate (Figure 1 a)^[6a] and five-coordinate (Figure 1 b)^[6b] silicon bis(dithiolene)s were reported at +45.4 ppm and -57.2 ppm, respectively. Five-coordinate ²⁹Si resonances were not observed in variable-temperature (VT)²⁹Si NMR experiments (Figures S4–S7 in the Supporting Information), which does not support an equilibrium between 3 and the five-coordinate silicon species (which could possibly be produced through partial dissociation of a dithiolene ligand in solution). Indeed, over the 40 °C to -35 °C temperature range the ²⁹Si NMR resonances of **3** only shift slightly from -150.3 ppm to -153.4 ppm.

Six-coordinate silicon atoms residing in an S₆ coordination environment are rare, the literature only revealing bis(tridentate) [Si(Tm^{Ph})₂]X₂ (Tm^{Ph} = hydro-tris(phenylthioimidazolyl)borate, X = I⁻ and I₃⁻).^[22] By comparison, **3** is the first tris(bidentate ligand) complexes containing a SiS₆ core. In the solid-state the six-coordinate silicon atom of **3** adopts a distorted octahedral geometry (Figure 2 a). Both trigonal twist angle (ϕ) and s/h ratio (Figure 2b) have been utilized in evaluating the structural distortion from the regular octahedron (ϕ = 60.0° and s/h = 1.22) for tris(bidentate ligand) complexes.^[1a,23] Both **3** and its simplified model [**3-H**]²⁻ (in D_3 symmetry, optimized at the B3LYP/6–311G** DFT level)^[14] have a trigonal twist angle (ϕ) of 60.0° based on the view in Figure 2b. The 1.14 s/h ratio of **3** is smaller than

Figure 2. a) Molecular structure of silicon tris(dithiolene) dianion $([3]^{2^-}$; thermal ellipsoids set at 30% probability; hydrogen atoms bound to carbon atoms are omitted for clarity).^[25] Selected bond lengths [Å] and angles (°): C(1)–S(1) 1.680(4), C(2)–C(3) 1.342(4), C(2)–S(2) 1.729(3), C(3)–S(3) 1.725(3), S(2)–Si(1) 2.3195(12), S(3)–Si(1) 2.3374(12); S(2)-C(2)-C(3) 124.9(3), C(2)-S(2)-Si(1) 95.10(11), S(2)-Si(1)-S(3) 94.71(3), S(2)-Si(1)-S(3A) 177.19(3). b) Schematic representation of $[3]^{2^-}$ (trigonal twist angle ϕ , triangle side s, intertriangle distance h, Dipp₂timdt = diisopropylphenyl-substituted imidazolidine-2,4,5-trithione).^[1a, 23]

that of the regular octahedron (1.22), indicating the presence of somewhat elongated distortion in 3.^[23] The s/h ratio of the simplified model [3-H]²⁻ (1.12) is even marginally smaller than that of **3** (1.14). It is noteworthy that the SiS_6 cores in $[Si(Tm^{Ph})_2]^{2+}$ dications exhibit the slightly flattened octahedral structures, with 83.45(4)-84.54(3)° intra-ligand S-Si-S angles and 95.46(3)-96.55(4)° inter-ligand S-Si-S angles.^[22] In contrast to the planar $C_2S_2S_1$ rings in $[3-H]^{2-}$ and in $Si[S_2(o C_6H_4$]^[6a] (Figure 1 a), the C₂S₂Si rings in **3** are bent [bend angle^[1a] (η) between the SiS₂ plane and the S₂C₂ plane = 29.7°, av], which may be due to the steric repulsion between the bulky ligands and the packing effects. The olefinic C-C bonds [1.342(4) Å] and C-S bonds [1.727(3) Å, av] in the C₂S₂ units of 3 are comparable with those in various reported dithiolates, such as $(NMe_4)_2(C_3S_5)$ $[d_{C-C} = 1.371(8) \text{ Å}, d_{C-S} = 1.716$ -(4) Å].^[24] Considering the dianionic character of ${\bf 3}$, the central silicon atom has the formal oxidation state of +4. While being similar to those in $[Si(Tm^{Ph})_2]^{2+}$ dications (2.3176 Å, av),^[22] the Si-S bonds of **3** [2.3195(12)-2.3374(12) Å] are somewhat

Angewandte International Edition Chemie

shorter than that in $[3-H]^{2-}$ (2.3894 Å), and considerably longer than that [2.1381(6) Å] in four-coordinate silicon bis(dithiolene), Si[S₂(o-C₆H₄)]₂ (Figure 1a).^[6a] The zwitterionic pentacoordinate silicon bis(dithiolene) (Figure 1b) contains both [2.1590(9) Å, av] equatorial and [2.3076(7) Å, av] axial Si–S bonds.^[6b]

While the LUMO of the simplified model $[3-H]^{2-}$ is a silicon-sulfur σ -antibonding orbital, the corresponding HOMO is almost entirely ligand-based, involving C–C π bonding and C–S π -antibonding character (Figure 3). The 0.630 Wiberg bond index of the Si–S bond in $[3-H]^{2-}$ supports its single-bond character. The central silicon atom bears a positive natural charge of +0.72 while each sulfur atom (adjacent to the silicon atom) bears a negative charge of -0.16.

Figure 3. Frontier molecular orbitals of [3-H]²⁻ model.

In conclusion, the first six-coordinate silicon tris(dithiolene) dianion (3) has been synthesized by employing carbenestabilized disilicon (1) as a silicon-transfer agent. The application of 1 as a silicon-transfer agent may be extended to a broad group of inorganic and organometallic substrates in the future. The redox reactivity of 3 is being explored.

Acknowledgements

We are grateful to the National Science Foundation for support: CHE-1565676 and CHE-1855641 (G.H.R., Y.W.) and CHE-1661604 (H.F.S.).

Conflict of interest

The authors declare no conflict of interest.

Keywords: carbenes \cdot dithiolenes \cdot hypervalent compounds \cdot radicals \cdot silicon

- a) Dithiolene Chemistry: Synthesis Properties, and Applications (Ed.: E. I. Stiefel), Wiley, Hoboken, 2004; b) R. Kato, Chem. Rev. 2004, 104, 5319-5346; c) B. Garreau-de Bonneval, K. I. M. C. Ching, F. Alary, T. T. Bui, L. Valade, Coord. Chem. Rev. 2010, 254, 1457-1467; d) A. Kobayashi, E. Fujiwara, H. Kobayashi, Chem. Rev. 2004, 104, 5243-5264; e) S. Sproules, K. Wieghardt, Coord. Chem. Rev. 2011, 255, 837-860.
- 8866 www.angewandte.org

- Allg. Chem. 2004, 630, 1469-1476.
 [4] a) R. O. Day, J. M. Holmes, S. Shafieezad, V. Chandrasekhar, R. R. Holmes, J. Am. Chem. Soc. 1988, 110, 5377-5383; b) F. de Assis, Z. H. Chohan, R. A. Howie, A. Khan, J. N. Low, G. M. Spencer, J. L. Wardell, S. M. S. V. Wardell, Polyhedron 1999, 18, 3533-3544; c) T. Akasaka, M. Nakano, H. Tamura, G. E. Matsubayashi, Bull. Chem. Soc. Jpn. 2002, 75, 2621-2628.
- [5] a) J. Wegener, K. Kirschbaum, D. M. Giolando, J. Chem. Soc. Dalton Trans. 1994, 1213–1218; b) J. M. Kisenyi, G. R. Willey, M. G. B. Drew, S. O. Wandiga, J. Chem. Soc. Dalton Trans. 1985, 69–74; c) G. M. Spencer, J. L. Wardell, J. H. Aupers, Polyhedron 1996, 15, 2701–2706.
- [6] a) U. Herzog, U. Böhme, G. Rheinwald, J. Organomet. Chem.
 2000, 612, 133-140; b) R. Tacke, M. Mallak, R. Willeke, Angew. Chem. Int. Ed. 2001, 40, 2339-2341; Angew. Chem. 2001, 113, 2401-2403; c) O. Seiler, M. Buttner, M. Penka, R. Tacke, Organometallics 2005, 24, 6059-6062.
- [7] a) C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young, *Chem. Rev.* 1993, 93, 1371-1448; b) J. Wagler, U. Böhme, E. Kroke, *Struct. Bonding (Berlin)* 2014, 155, 29-105.
- [8] D. M. Peloquin, T. A. Schmedake, Coord. Chem. Rev. 2016, 323, 107–119.
- [9] a) D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, *Chem. Rev.* 2000, 100, 39–91; b) Y. Wang, G. H. Robinson, *Inorg. Chem.* 2014, 53, 11815–11832; c) V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, *Chem. Rev.* 2018, 118, 9678–9842; d) A. Doddi, M. Peters, M. Tamm, *Chem. Rev.* 2019, 119, 6994–7112; e) M. Soleilhavoup, G. Bertrand, *Acc. Chem. Res.* 2015, 48, 256–266; f) K. Chandra Mondal, S. Roy, H. W. Roesky, *Chem. Soc. Rev.* 2016, 45, 1080–1111; g) H. Braunschweig, R. D. Dewhurst, *Angew. Chem. Int. Ed.* 2013, 52, 3574–3583; *Angew. Chem.* 2013, 125, 3658–3667; h) Y. Wang, G. H. Robinson, *Dalton Trans.* 2012, 41, 337–345.
- [10] J. P. Wagner, P. R. Schreiner, J. Chem. Theory Comput. 2016, 12, 231–237.
- [11] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson, *Science* **2008**, *321*, 1069–1071.
- [12] N. A. Piro, J. S. Figueroa, J. T. McKellar, C. C. Cummins, *Science* 2006, 313, 1276–1279.
- [13] C. A. Dyker, G. Bertrand, Science 2008, 321, 1050-1051.
- [14] See the Supporting Information for synthetic, computational, and crystallographic details.
- [15] Y. Wang, H. P. Hickox, Y. Xie, P. Wei, S. A. Blair, M. K. Johnson, H. F. Schaefer III, G. H. Robinson, J. Am. Chem. Soc. 2017, 139, 6859–6862.
- [16] Y. Wang, Y. Xie, M. Y. Abraham, P. Wei, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2010, 132, 14370-14372.
- [17] Y. Wang, Y. Xie, P. Wei, S. A. Blair, D. Cui, M. K. Johnson, H. F. Schaefer III, G. H. Robinson, *Angew. Chem. Int. Ed.* **2018**, *57*, 7865–7868; *Angew. Chem.* **2018**, *130*, 7991–7994.
- [18] Y. Wang, N. A. Maxi, Y. Xie, P. Wei, H. F. Schaefer III, G. H. Robinson, *Chem. Commun.* **2019**, *55*, 8087–8089.
- [19] a) M. Y. Abraham, Y. Wang, Y. Xie, P. Wei, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2011, 133, 8874-8876; b) H. P. Hickox, Y. Wang, Y. Xie, M. Chen, P. Wei, H. F. Schaefer III, G. H. Robinson, Angew. Chem. Int. Ed. 2015, 54, 10267-10270; Angew. Chem. 2015, 127, 10405; c) Y. C. Chan, B. X. Leong, Y. X. Li, M. C. Yang, Y. Li, M. D. Su, C. W. So, Angew. Chem. Int. Ed. 2017, 56, 11565-11569; Angew. Chem. 2017, 129, 11723-11727; d) Y. Wang, M. Chen, Y. Xie, P. Wei, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson, Nat. Chem. 2015, 7, 509-513; e) Y. Wang, M. Chen, Y. Xie, P. Wei, H. F.

Schaefer III, G. H. Robinson, J. Am. Chem. Soc. 2015, 137, 8396-8399.

- [20] a) Y. Wang, H. P. Hickox, Y. Xie, P. Wei, H. F. Schaefer III, G. H. Robinson, J. Am. Chem. Soc. 2017, 139, 16109–16112; b) A. C. Filippou, O. Chernov, K. W. Stumpf, G. Schnakenburg, Angew. Chem. Int. Ed. 2010, 49, 3296–3300; Angew. Chem. 2010, 122, 3368–3372.
- [21] E. A. Williams in *The Chemistry of Organic Silicon Compounds* (Eds.: S. Patai, Z. Rappoport), Wiley, Chichester, **1989**.
- [22] A. Marckwordt, R. Rajasekharan-Nair, G. Steel, A. R. Kennedy, J. Reglinski, M. D. Spicer, *Eur. J. Inorg. Chem.* 2016, 2552–2555.
- [23] E. I. Stiefel, G. F. Brown, Inorg. Chem. 1972, 11, 434-436.
- [24] J. G. Breitzer, A. I. Smirnov, L. F. Szczepura, S. R. Wilson, T. B. Rauchfuss, *Inorg. Chem.* 2001, 40, 1421–1429.
- [25] CCDC 1966399 (3-THF) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Manuscript received: December 20, 2019 Accepted manuscript online: March 10, 2020 Version of record online: April 8, 2020