ChemComm

www.rsc.org/chemcomm

CrossMark

Protonation of carbene-stabilized diphosphorus: complexation of HP_2^+ ?

Yuzhong Wang,^a Hunter P. Hickox,^a Yaoming Xie,^b Pingrong Wei,^a Dongtao Cui,^a Melody R. Walter,^a Henry F. Schaefer III^b and Gregory H. Robinson*^a

Reaction of carbene-stabilized diphosphorus, L:P-P:L (5) (L: = :C{N(2,6-Prⁱ₂C₆H₃)CH}₂) with pyridine hydrochloride yields [L:(H)P-P:L]Cl (6), a salt containing the HP₂⁺ cation—the elusive phosphorus analogue of the well known diazonium cation, HN_2^+ . In addition to reporting the synthesis and structure, the nature of (6) was further probed by DFT computations. Interestingly, carbenes may be employed to deprotonate (6), affording the starting material (5).

In contrast to aromatic diazonium cations, RN_2^+ (R = aryls), which have been extensively utilized in palladium-catalyzed cross-coupling reactions,¹ the parent diazonium cation, HN_2^+ , is elusive in the condensed state, having only been observed in the gas phase.² Similarly, the phosphorus analogue of HN_2^+ , the parent phosphaphosphenium (or phosphanediylphophenium) cation,³ HP_2^+ , is also highly reactive and has only been investigated in the gas phase⁴ or computationally.⁵ Ion cyclotron resonance spectroscopy (ICR) studies have suggested that HP_2^+ may be prepared (in the gas phase) by reaction of PH₃ with P⁺ or H_2P^+ ions.^{4a} While direct protonation of P₂ to produce HP_2^+ has been theoretically proposed,^{5c} experimental studies have not been reported. In contrast to N₂, which undergoes end-on (or linear) protonation (Fig. 1a), P₂ is predicted to favor an edge-on (or cyclic) HP_2^+ structure (Fig. 1b).^{5c}

As phosphorus analogues of carbenes, phosphenium ions, $[R_2P:]^+$, have been extensively utilized as ligands in the synthesis of coordination complexes.⁶ In addition, phosphenium ions have also functioned as electrophiles in reactions with Lewis bases and transition metals.^{6c,7} Employing a very sterically demanding carbene, Bertrand, in an interesting turn, recently stabilized the highly reactive parent phosphenium cation, H_2P^+ .⁸

H−N≡N:]⁺	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(a)	(b)

Fig. 1 (a) End-on protonation of N_2 ; (b) edge-on protonation of P_2 .

While a series of carbene-stabilized P_n (n = 1-4, 8, and 12) molecules have recently been reported,⁹ carbene-stabilized diphosphorus L:P–P:L [L: = :C{N(2,6-Prⁱ₂C₆H₃)CH}₂]^{9b,10} (5), prepared *via* potassium graphite reduction of L:PCl₃, is particularly relevant as it provides a convenient platform to study the protonation of diphosphorus. Herein, we report the synthesis,¹¹ structure,¹¹ and computations¹¹ of carbene-stabilized HP₂⁺, [L:(H)P–P:L]⁺Cl⁻; [L: = :C{N(2,6-Prⁱ₂C₆H₃)CH}₂] (6).

We have previously utilized HCl·NEt₃ to protonate the C2 carbon atoms of both anionic NHDC-borane complexes (1) and SiCl₃modified (at C4 carbon) N-heterocyclic carbenes (2), giving abnormal carbene (aNHC)-based borane (3) and silicon chloride derivatives (4), respectively (Fig. 2, R = 2,6-diisopropylphenyl).¹² These studies encouraged us to investigate a series of amine-complexed HCl salts. Consequently, we discovered that pyridine hydrochloride salt (HCl·NC₅H₅) is an ideal protonation agent for carbenestabilized P₂ (5).

Fig. 2 $HCl\cdot NEt_3$ as a protonation agent in the synthesis of aNHC-based main group complexes.

^a Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA. E-mail: robinson@uga.edu

^b Center for Computational Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA

[†] Electronic supplementary information (ESI) available: Synthetic and computational details and structural and spectral characterization. CCDC 1454832. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c6cc01759b

Fig. 3 Synthesis of carbene-stabilized HP_2^+ ion 6 and its deprotonation to give 5.

Reaction of 5 (red crystals) with HCl·NC₅H₅ (1:1 molar ratio) in toluene at ambient temperature quantitatively gives 6 (yellow powder) (Fig. 3, R = 2,6-diisopropylphenyl). Significantly, the 1:2 reaction of 5 with HCl·NC₅H₅ does not result in the diprotonated salt [L:(H)P–P(H):L]²⁺[Cl⁻]₂, affording only 6. Computations, however, suggest that the free [H₂P₂]²⁺ dication is stable toward proton loss.^{5*a*} Both H₂S and H₂O have been reported to deprotonate HP₂⁺ (in the gas phase) affording free P₂ molecules.^{4*c*} Notably, we observed that the N-heterocyclic carbene [NHC = :C[PrⁱNC(Me)]₂] serves to deprotonate 6, quantitatively giving 5 (Fig. 3). Interestingly, 6 is less air- and moisture-sensitive than 5. In addition, 5 shows two reversible oxidations at $E_{1/2} = -1.408$ and -0.178 V (vs. Fc⁺/Fc),¹³ whereas 6 exhibits a quasi-reversible redox couple at $E_{1/2} = -1.60$ V (vs. Fc⁺/Fc; scan rate 100 mV s⁻¹) (Fig. S1 and S2, ESI⁺).

In contrast to the singlet ³¹P NMR resonance of **5** (-52.4 ppm), the ³¹P{¹H} spectrum of **6** [Fig. 4(I)] shows two coupled resonances at -105.2 (for P_A, Fig. 3) and -109.8 (for P_B, Fig. 3) ppm ($|^{1}J_{pp}| = 235$ Hz). The ¹H-coupled ³¹P NMR spectrum of **6** is shown in Fig. 4(II) with $|^{1}J_{P(A)-H}| = 204$ Hz and $|^{2}J_{P(B)-H}| = 11$ Hz, which are consistent with the P–H coupling constants observed in ¹H NMR spectrum of **6** ($|^{1}J_{P(A)-H}| = 205$ Hz and $|^{2}J_{P(B)-H}| = 10$ Hz).

Fig. 4 (I) Proton-decoupled ³¹P NMR spectrum of **6**; (II) proton-coupled ³¹P NMR spectrum of **6** [δ (ppm): a = -104.11; b = -105.12; c = -105.28; d = -106.28; e = -109.24; f = -109.29; g = -110.40; h = -110.45].

Fig. 5 Molecular structure of **6**⁺ [thermal ellipsoids represent 30% probability; hydrogen atoms on carbons and the disordered P(2) atom (with 30.0% occupancy) omitted for clarity]. Selected bond distances (Å) and angles (deg): P(1)–C(1) = 1.830(3), P(1)–P(2') = 2.160(6), P(1)–P(2) = 2.098(13), P(2')–C(28) = 1.795(7), P(2)–C(28) = 1.760(14); C(1)–P(1)–P(2') = 97.87(19), C(1)–P(1)–P(2) = 95.2(4), P(1)–P(2')–C(28) = 101.1(3), P(1)–P(2)–C(28) = 104.7(5), C(1)–P(1)–H(1) = 95(2), H(1)–P(1)–P(2') = 99(2), H(1)–P(1)–P(2) = 114(2).

Single crystal X-ray structural analysis shows that the HP₂⁺ core in 6 adopts a bent geometry due to the coordination of two carbene ligands (Fig. 5).¹¹ The H(1) atom was located from the difference Fourier map. The two-coordinate phosphorus atom is disordered [denoted as P(2) (30.0% occupancy) and P(2')(70.0% occupancy), respectively] and adopts a bent geometry, whereas the three-coordinate phosphorus atom, P(1), has a pyramidal geometry. The average P-P bond distance of 6 (2.141 Å) is shorter than the P-P single bond distances in 5 (2.205 Å) and P₄ (2.21 Å),^{9b,14} but longer than typical P=P double bond distances in diphosphenes (ca. 2.00 Å).¹⁵ Notably, the short P-P single bonds have also been observed in 1,2-diborylphosphanes (ca. 2.11 Å)¹⁶ and in a neutral diphosphanide [(^{CI}Im^{Dipp})P-P(Cl)(Dipp) (^{Cl}Im^{Dipp} = 4,5-dichloro-1,3-bis(Dipp)-imidazol-2-yl; Dipp = 2,6-diisopropylphenyl) [2.1327(9) Å] and its cationic derivative [(^{Cl}Im^{Dipp})P–P(PMe₃)(Dipp)]⁺ [2.151(1) Å].¹⁷ The latter may be regarded as a phosphaphosphenium P-PR (R = Dipp) ion, which is coordinated by two Lewis base ligands (i.e., carbene and phosphine). The single carbene-complexed phosphaphosphenium [(^{Cl}Im^{Dipp})P=P(Dipp)]⁺ containing a P=P double bond [2.038(1) Å] has also been reported by the same group.¹⁷

While the average P–C(28) bond distance in **6** (1.784 Å) compares to that in **5** (1.750 Å), the P(1)–C(1) bond distance (1.830 Å) in **6** is elongated to the range for normal P–C single bonds.^{9b} The P–C bond elongation may be ascribed to the formation of P(1)–H(1) bond, inhibiting the p– π back donation of the lone pair of electrons of P(1) into the vacant p orbital of C(1). It is noteworthy that this type of elongation has also been observed in a cyclic L₂P₂-complexed boronium salt, [L:P(μ -BH₂)P:L]⁺[B₂H₇]⁻ [L: = :C{N(2,6-Pri₂C₆H₃)CH}₂] (1.83 Å).¹⁸

In an effort to further probe the nature of **6**, DFT computations at the B3LYP/6-311+G^{**} level on the simplified model [**6-Me**]⁺ [L: = :C{N(Me)CH}₂, Fig. S3, ESI[†]] were performed.¹¹ While the C_{NHC}-P_H bond distance for [**6-Me**]⁺ (1.841 Å) compares well to that for **6** (1.830 Å), both the P–P bond (2.225 Å) and P(2)-C_{NHC}

Fig. 6 Selected localized molecular orbitals (LMOs) of **[6-Me]**⁺: (a) C_{NHC} -P(H) σ -bonding orbital; (b) P–P σ -bonding orbital; (c) P–H σ -bonding orbital; (d) lone pair orbital of three-coordinate P; (e) and (f) lone pair orbitals of two-coordinate P.

(1.815 Å) in **[6-Me]**⁺ (Fig. S3, ESI[†]) are longer than those in **6** $[d_{P-P} = 2.141$ Å (av); $d_{C(28)-P} = 1.784$ Å (av)], respectively (Fig. 5). This suggests that the electronic and steric properties of the ligand may play a partial role in the change of the P–P and P–C bond distances. For instance, in **6** the imidazole ring, bound to the two coordinate phosphorus, is almost coplanar to the central P–P bond with a N(3)–C(28)–P(2)–P(1) torsion angle of 170.1° (av), which should favour p– π back donation of the lone pair of electrons of phosphorus into the empty p orbital of the carbene carbon [*i.e.*, C(28)] (Fig. 5). However, for **[6-Me]**⁺, the corresponding N(6)–C(12)–P(2)–P(1) torsion angle of 142.46° (Fig. S3, ESI[†]) somewhat decreases the p– π back donation mentioned above (as shown in Fig. 6e) and thus gives a longer P(2)–C_{NHC} bond.

Selected localized molecular orbitals (LMOs) of $[6-Me]^+$ are presented (Fig. 6). Natural bond orbital (NBO) analysis shows that the positive charge is largely delocalized [P(1) bears only +0.25 positive charge]. The WBI of the central P–P single bond (1.021), in which P(1) and P(2) have 85.0% and 89.3% p character, respectively, (Fig. 6b), compares well to that of 5 (1.004).^{9b} While the P(1)–C(7) bond (Fig. S3, ESI†) is a typical single bond (WBI = 0.937, Fig. 6a), the P(2)–C(12) bond (Fig. S3, ESI†) has modest double bond character (WBI = 1.128). The P–C σ bond polarization is *ca.* 67% toward carbon and *ca.* 33% toward phosphorus.

Considering the cyclic HP_2^+ structure (Fig. 1b) is favoured in the gas phase, ^{5c} we also computed the model of [**6-Me**]⁺ in C_2 symmetry, containing a bridging hydrogen between two phosphorus atoms. Our study shows that the model in C_2 symmetry represents a transition state, which is 29.1 kcal mol⁻¹ higher in energy than the model with a terminal hydrogen and thus does not support a dynamic hydrogen shift between two phosphorus atoms. We have synthesized the first carbene-stabilized parent phosphaphosphenium ion (HP_2^+) (6) *via* HCl·NC₅H₅ protonation of carbene-complexed diphosphorus (5). Both structural and computational studies show that the HP_2^+ core in 6 adopts a bent geometry. The redox capabilities of this unique carbene-stabilized HP_2^+ cation are under investigation.

We are grateful to the National Science Foundation for support: CHE-1565676 (G. H. R., Y. W.) and CHE-1361178 (H. F. S.). We also want to thank Prof. Todd C. Harrop for his assistance with the cyclic voltammetric measurements.

References

- 1 A. Roglans, A. Pla-Quintana and M. Moreno-Manas, *Chem. Rev.*, 2006, **106**, 4622-4643.
- 2 G. A. Olah, R. Herges, J. D. Felberg and G. K. S. Prakash, *J. Am. Chem. Soc.*, 1985, **107**, 5282–5283.
- 3 W. W. Schoeller, in Top. Curr. Chem., ed. J.-P. Majoral, 2003, pp. 75-94.
- 4 (a) D. Holtz, J. L. Beauchamp and J. R. Eyler, J. Am. Chem. Soc., 1970,
 92, 7045–7055; (b) K. P. Wanczek, Z. Naturforsch., A: Phys. Sci., 1975,
 30, 329–339; (c) R. A. J. Ohair, M. Krempp, R. Damrauer and C. H. Depuy, Inorg. Chem., 1992, 31, 2092–2096.
- 5 (a) M. T. Nguyen and N. J. Fitzpatrick, *Chem. Phys. Lett.*, 1988, 146, 524–530; (b) T. Busch, W. W. Schoeller, E. Niecke, M. Nieger and H. Westermann, *Inorg. Chem.*, 1989, 28, 4334–4340; (c) R. Glaser, C. J. Horan and P. E. Haney, *J. Phys. Chem.*, 1993, 97, 1835–1844.
- 6 (a) A. H. Cowley and R. A. Kemp, Chem. Rev., 1985, 85, 367–382;
 (b) D. Gudat, Coord. Chem. Rev., 1997, 163, 71–106; (c) L. Rosenberg, Coord. Chem. Rev., 2012, 256, 606–626.
- 7 (a) N. Burford, P. J. Ragogna, R. McDonald and M. J. Ferguson, J. Am. Chem. Soc., 2003, 125, 14404–14410; (b) J. J. Weigand, K. O. Feldmann and F. D. Henne, J. Am. Chem. Soc., 2010, 132, 16321–16323; (c) S. Gaillard and J. L. Renaud, Dalton Trans., 2013, 42, 7255–7270; (d) I. Abdellah, C. Lepetit, Y. Canac, C. Duhayon and R. Chauvin, Chem. Eur. J., 2010, 16, 13095–13108.
- 8 L. Liu, D. A. Ruiz, F. Dahcheh and G. Bertrand, *Chem. Commun.*, 2015, **51**, 12732–12735.
- 9 (a) O. Back, G. Kuchenbeiser, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed., 2009, 48, 5530-5533; (b) Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, III, P. v. R. Schleyer and G. H. Robinson, J. Am. Chem. Soc., 2008, 130, 14970-14971; (c) A. M. Tondreau, Z. Benko, J. R. Harmer and H. Grützmacher, Chem. Sci., 2014, 5, 1545-1554; (d) J. D. Masuda, W. W. Schoeller, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed., 2007, 46, 7052-7055; (e) D. Masuda, W. W. Schoeller, B. Donnadieu and G. Bertrand, J. Am. Chem. Soc., 2007, 129, 14180-14181.
- 10 Y. Wang, Y. Xie, M. Y. Abraham, R. J. Gilliard, Jr., P. Wei, H. F. Schaefer, III, P. v. R. Schleyer and G. H. Robinson, *Organometallics*, 2010, 29, 4778–4780.
- 11 See the ESI,[†] for synthetic, computational, and crystallographic details.
- 12 (a) Y. Wang, M. Y. Abraham, R. J. Gilliard, Jr., P. Wei, J. C. Smith and G. H. Robinson, *Organometallics*, 2012, **31**, 791–793; (b) Y. Wang, Y. Xie, P. Wei, H. F. Schaefer, III and G. H. Robinson, *Dalton Trans.*, 2016, **45**, 5941–5944.
- 13 O. Back, B. Donnadieu, P. Parameswaran, G. Frenking and G. Bertrand, *Nat. Chem.*, 2010, **2**, 369–373.
- 14 F. A. Cotton, G. Wilkinson, M. Bochmann and C. Murillo, *Advanced Inorganic Chemistry*, Wiley, New York, 1998.
- 15 L. Weber, Chem. Rev., 1992, 92, 1839-1906.
- 16 D. C. Pestana and P. P. Power, J. Am. Chem. Soc., 1989, 111, 6887–6888.
- 17 K. Schwedtmann, M. H. Holthausen, C. H. Sala, F. Hennersdorf, R. Frohlich and J. J. Weigand, *Chem. Commun.*, 2016, 52, 1409–1412.
- 18 Y. Wang, Y. Xie, M. Y. Abraham, P. Wei, H. F. Schaefer, III, P. v. R. Schleyer and G. H. Robinson, *Chem. Commun.*, 2011, 47, 9224–9226.